Dispersion, coherence and noise of Fourier domain mode locked lasers.
نویسندگان
چکیده
We report on the effect of chromatic dispersion on coherence length and noise of Fourier Domain Mode Locked (FDML) lasers. An FDML laser with a sweep range of 100 nm around 1550 nm has been investigated. Cavity configurations with and without dispersion compensation have been analyzed using different widths of the intra-cavity optical band-pass filter. The measurements are compared to non-FDML wavelength swept laser sources. Based on these observations, a simple model is developed providing a connection between timing, photon cavity lifetime and characteristic time constant of the filter. In an optimized configuration, an instantaneous laser linewidth of 20 pm is observed, corresponding to a 10x narrowing compared to the intra-cavity optical bandpass filter. A relative intensity noise of -133 dBc/Hz or 0.2% at 100 MHz detection bandwidth during sweep operation is observed. For optimum operation, the filter drive frequency has to be set within 2 ppm or 120 mHz at 51 kHz.
منابع مشابه
Coherence length extension of Fourier domain mode locked lasers
Fourier domain mode locked (FDML) lasers provide high sweep rates, broad tuning ranges, and high output powers for optical coherence tomography (OCT) systems. However, presently-known FDML lasers at 1300 nm have relatively short coherence lengths, limiting the size of samples that can be imaged. Furthermore, FDML lasers produce only one useable sweep direction. We report FDML coherence length e...
متن کاملExtended coherence length Fourier domain mode locked lasers at 1310 nm.
Fourier domain mode locked (FDML) lasers are excellent tunable laser sources for frequency domain optical coherence tomography (FD-OCT) systems due to their combination of high sweep rates, large tuning ranges, and high output powers. However, conventional FDML lasers provide coherence lengths of only 4-10 mm, limiting their use in demanding applications such as intravascular OCT where coherenc...
متن کاملPhase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers.
Buffered Fourier domain mode-locked (FDML) lasers are demonstrated for dynamic phase-sensitive optical coherence tomography (OCT) and 3D OCT phase microscopy. Systems are operated at sweep speeds of 42, 117, and 370 kHz, and displacement sensitivities of 39, 52, and 102 pm are achieved, respectively. Sensitivities are comparable to spectrometer-based OCT phase microscopy systems, but much faste...
متن کاملFrequency synchronization of Fourier domain harmonically mode locked fiber laser by monitoring the supermode noise peaks.
In a harmonically mode locked laser, the supermode noise peaks in the RF spectrum can be observed directly because they are separated from the driving frequency and its harmonics of the active mode locker. Using a simple theoretical model, we showed that the intensities of the supermode noise peaks will decrease if the coherence of the laser output decreases. We harmonically mode locked a Fouri...
متن کاملReduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering.
Fiber lasers mode-locked with normal cavity dispersion have recently attracted great attention due to large output pulse energy and femtosecond pulse duration. Here we accurately characterized the timing jitter of normal-dispersion fiber lasers using a balanced cross-correlation method. The timing jitter characterization experiments show that the timing jitter of normal-dispersion mode-locked f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 17 12 شماره
صفحات -
تاریخ انتشار 2009